

HHS Public Access

Author manuscript

J Acad Nutr Diet. Author manuscript; available in PMC 2025 January 01.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Published in final edited form as:

J Acad Nutr Diet. 2024 January ; 124(1): 28–41. doi:10.1016/j.jand.2023.08.128.

Characteristics Associated with Purchasing Sugar-Sweetened Beverages and Bottled Water Among U.S. Households, 2015

Armen Ghazaryan, PhD, MS,

Health Economics Researcher, Office of the Director, National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP), Centers for Disease Control and Prevention (CDC), Atlanta, GA.

Sohyun Park, PhD,

Lead Epidemiologist, Division of Nutrition, Physical Activity and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA.

Stephen J. Onufrek, PhD,

Health Scientist, Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA.

Andrea C Carlson, PhD, MS,

Economist, Food Economics Division (FED), Economic Research Service (ERS), United States Department of Agriculture (USDA), Washington, DC.

Alana Rhone, MPP,

Agricultural Economist, Food Economics Division (FED), Economic Research Service (ERS), United States Department of Agriculture (USDA), Washington, DC.

Kakoli Roy, PhD, MA

Senior Economic Advisor, National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP), Centers for Disease Control and Prevention, Chamblee, GA.

Abstract

Corresponding author: Armen Ghazaryan, qkz9@cdc.gov, Phone: 770-488-2537.

Author contributions: Conceptualization: SP, SO, and AG; methodology: AG, SP, SO, KR, and AC; resources: AC and AR; formal analysis: AG and AC; writing—original draft preparation: AG, SP, and SO. All authors reviewed and commented on subsequent drafts of the manuscript.

Disclosures: No conflicts of interest were reported by the authors of this paper. No financial disclosures were reported by the authors of this paper.

CDC Disclaimer: The findings and conclusions in this article are those of the authors and do not necessarily represent the official position of CDC.

USDA/Circana Disclaimer: The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA or U.S. Government determination or policy. This research was supported in part by the U.S. Department of Agriculture, Economic Research Service. The analysis, findings, and conclusions expressed in this publication also should not be attributed to Circana (formerly IRI).

Publisher's Disclaimer: This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Background—Frequent intake of sugar-sweetened beverages (SSBs) among U.S. adults is a public health concern, because it has been associated with increased risks for adverse health outcomes such as obesity, type 2 diabetes, and cardiovascular disease. In contrast, drinking plain water (such as tap, bottled, or unsweetened sparkling water) instead of drinking SSBs might provide health benefits by improving diet quality and helping prevent chronic diseases. However, there is limited information on estimated expenditures on SSBs or bottled water among U.S. households.

Objective—This study examined differences in SSB and bottled water purchasing according to household and geographic area characteristics and estimated costs spent on purchasing SSB and bottled water from retail stores among a nationally representative sample of U.S. households.

Design—This study is a secondary analysis of the 2015 Circana (formerly Information Resources Inc. [IRI]) Consumer Network Panel (CNP) data, which were merged with the USDA nutrition data using the USDA Purchase-to-Plate Crosswalk-2015 (PPC) dataset (the latest available version of the PPC at the time the study began), and the Child Opportunity Index 2.0 (COI) data.

Participants/settings—A total of 63,610 households, representative of the contiguous U.S. population, consistently provided food and beverage purchase scanner data from retail stores throughout 2015.

Explanatory variables—The included demographic and socioeconomic variables were household head's age, marital status, highest education level, race and ethnicity of the primary shopper in the household, family income relative to the federal poverty level, and presence of children in the household. Additionally, descriptors of households' residential areas were included, such as the county-level poverty prevalence, urbanization, census region, and census tract level Child Opportunity Index.

Main outcome measures—Annual per capita spending (USD) on SSB and bottled water and daily per capita SSB calories purchased.

Statistical analysis—Unadjusted and multivariable adjusted mean values of the main outcome measures were compared by household demographic, socioeconomic, and geographic characteristics using linear regression analysis including Circana's household projection factors.

Results—Nearly all households reported purchasing SSBs at least once during 2015 and spent on average \$47 (interquartile range [IQR]: \$20) per person per year on SSBs, which corresponded to 211 kcal (IQR: 125 kcal) of SSBs per person per day. About 7 in 10 households reported purchasing bottled water at least once during 2015 and spent \$11 (IQR: \$5) per person on bottled water per year. Both annual per capita SSB and bottled water spending, and daily per capita SSB calories purchased was highest for households whose heads were between 40–59 years of age, had low household income, or lived in poor counties, or counties with a low Child Opportunity Index. Annual per capita spending was also higher for households with never married/widowed/divorced head, or at least one non-Hispanic Black head, and households without children, or those living in the South. Daily per capita SSB calorie purchases were highest for households where at least one head had less than a high school degree, households with at least one Hispanic or married head, and households with children or those living in the Midwest.

Conclusions—These findings suggest that households that had lower socioeconomic status had higher annual per capita spending on SSBs and bottled water and higher daily per capita total SSB calories purchased than households with higher socioeconomic status.

Keywords

sugar-sweetened beverages (SSBs); bottled water; sodas; low-income; household spending; household purchases; household scanner data; Circana Consumer Network Panel; Purchase to Plate Crosswalk (PPC); Child Opportunity Index (COI); Social Vulnerability Index (SVI)

Introduction

Sugar-sweetened beverages (SSBs) include regular sodas, fruit drinks, sweetened coffee/tea drinks, sports drinks, energy drinks, and any other drinks that are sweetened with various forms of added sugars,¹ and are one of the leading sources of added sugars in the diet of adults in the United States (U.S.).^{1,2} While the consumption of SSBs has decreased over the past two decades,^{3–6} SSB intake among U.S. adults still remains high. For example, 63% of U.S. adults reported consuming SSBs at least one time per day based on the 2010 and 2015 National Health Interview Survey data.⁶ According to the 2015–2018 National Health and Nutrition Examination Survey (NHANES), U.S. adults consumed an average of 98 kcal from SSBs on a given day.⁷ Furthermore, SSB intake is significantly higher among young adults, males, non-Hispanic Black and Hispanic adults, those with lower education level or lower household income, and those who lived in rural areas compared to their counterparts.^{6–8} These disparities may be compounded given that lower-income, racial and ethnic minority, and rural communities tend to have limited access to supermarkets, chain grocery stores, and outlets with healthful food products, and easier access to convenience stores and fast-food restaurants with high prevalence of processed and energy-dense foods.⁹ However, availability of different types of stores in communities is only weakly associated with the healthfulness of household food purchases.^{10–12}

Frequent intake of SSBs among adults is a public health concern given the associations with increased risks for adverse health outcomes such as obesity,^{13,14} type 2 diabetes,^{14–16} cardiovascular disease,^{17,18} dental caries,^{19,20} hypertension,²¹ dyslipidemia,^{22,23} and asthma.²⁴ However, the Dietary Guidelines for Americans Advisory Committee 2020 report found only limited to moderate evidence of a link between SSBs and obesity in both children and adults.²⁵ In contrast, drinking plain water (such as tap, bottled, or unsweetened sparkling water) instead of drinking SSBs might provide health benefits by improving diet quality and helping prevent chronic diseases.^{26–28} While the drinking water systems in the U.S. are among the safest in the world,²⁹ some Americans do not trust the safety of the local tap water,^{30–33} which may result in consuming more SSBs and/or bottled water. Because bottled water costs significantly more than tap water on a gallon-by-gallon basis, buying bottled water may put an undue cost burden on households with lower incomes who do not trust their local tap water.³⁴ A previous study reported that about 68% of U.S. adults perceived their local tap water was safe to consume, and mistrust of tap water safety was related to lower plain water and higher SSB intake, particularly among U.S. Hispanic adults.³⁵ Tap water quality violations and contamination, such as the Flint drinking water

crisis, which are more likely to happen in communities with lower socioeconomic status and large Black and Hispanic populations,³⁶ could be some of the reasons for mistrust of tap water safety.³⁷

SSB retail purchase increases access to or availability of SSBs at home, which in turn, is associated with higher SSB intake.^{38,39} Given that most SSB calories consumed in the U.S. were purchased from stores and for at-home consumption,⁴⁰ retail purchase data of SSBs and bottled water (both with a relatively long shelf life) can serve as a proxy for intake. Purchase data also provide the ability to examine the economic burden of SSB and water purchases on low-income families. While most previous studies using U.S. data examined consumption of SSBs and water among adults,^{3,33,41} only a few studies examined SSB calories or SSB amounts purchased among households.^{42,43} There is also limited information on estimated retail expenditure on SSBs or bottled water among U.S. households. Furthermore, the literature suggests the need to assess the relationship between SSB purchasing and community level characteristics, such as economic deprivation and geographic factors, such as rurality and region.⁴⁴ Given these gaps in the literature, this study examined differences in SSB and bottled water purchasing according to both household and geographic area characteristics, including region, area poverty, rurality, and Child Opportunity Index 2.0 (COI), and estimated costs spent on purchasing SSB and bottled water among a nationally representative sample of U.S. households. Focusing on child-related indicators such as COI is important because childhood health and eating habits may have long-term effects and influence their health and eating habits in adulthood.

Methods

Data Sources

Household purchases of SSBs and bottled water, as well as household demographics and characteristics were obtained from the 2015 Consumer Network Panel (CNP), obtained by the U.S. Department of Agriculture (USDA) from Circana (formerly IRI). Two market research companies—Circana and Nielsen—have a joint venture to collect the National Consumer Panel (NCP), which is a national panel of consumer purchases. Circana markets the data as the CNP and Nielsen as HomeScan. The NCP adds new households as other households leave the panel to maintain a balanced panel. About 60,000 households per year are included in Circana’s static panel. The static panel of households regularly provides data on their food expenditures over time, and their reported spending meets Circana’s specific food expenditure thresholds, indicating that they consistently provide comprehensive data. Circana provides sample projection factors for the static panel households to match Census targets for household size, age of household head(s), annual household income, race/ethnicity of the household respondent, presence of children 18 years of age in the household, and other variables.⁴⁵

Participating households use a smartphone application or handheld bar code scanner to report food and beverage purchases from retail stores and on-line ordering throughout the year.⁴⁵ Detailed product information is included: product descriptions, retail food categories and package size, as well as purchase data including purchased product quantities, price paid, and discount and coupon use. There are different types of retail stores included in the

data, such as convenience, drug, dollar, grocery, liquor, and club/mass merchandiser stores. In 2015, the number of participating households in the CNP was 127,484, of which 63,610 were included in the static panel. Only static panel households were included in the analysis. More information about household sampling, weighting, representatives, and food purchase data collection is provided in two USDA Economic Research Service's (ERS) technical bulletins.^{45,46}

We used the USDA's Purchase-to-Plate Crosswalk-2015 (PPC) dataset (the latest available year for PPC when the study began), to link the CNP with the USDA nutrition databases (nutrient and food group quantities) and provided information on the added sugars content of purchased products.^{47,48} This allowed identifying beverages with added sugars and excluding from the analysis those with no added sugars. ERS's technical bulletin describing the linking process states that the percent of sales within a group of foods with a valid match varies by section of the grocery store from which the reported food items originated.⁴⁷ Circana categorizes SSB products across multiple grocery store categories (e.g., carbonated soft drinks, juices, sports/energy drinks, coffee/tea drinks, etc.), with the linking rate (sales linked divided by total sales) ranging between 84.4% (refrigerated juices and drinks) and 99.9% (sports/energy drinks),⁴⁷ thus capturing the vast majority of purchased SSBs reported in the CNP.

Explanatory Variables

Explanatory variables included household demographic, socioeconomic, and geographic characteristics. Household sociodemographic characteristics were household head's age (18–39, 40–59, and 60 years), marital status (married or never married/widowed/divorced), race and ethnicity of the primary shopper or respondent in the household (non-Hispanic [NH] White, NH Black, Hispanic, NH Asian, and NH Other), highest education level (<high school, high school graduate, some college, college graduate, postgraduate), family income relative to the federal poverty level (FPL) (130% FPL, >130%–350% FPL, >350% FPL), and presence of children (<18 years) in the household (yes or no). In the CNP data, the primary respondent reported his/her/their race/ethnicity, which may represent the primary respondent's characteristics, those of other household members, or the entire household's race and ethnicity. For households with two heads, education represented the highest educational attainment amongst them, while age represented the average age of both household heads. Geographic characteristics included environment descriptors such as the county-level poverty prevalence, level of urbanization, census region (Northeast, Midwest, West, and South) and census tract level Child Opportunity Index (COI). The county-level poverty prevalence in 2015 (10%, >10%–20%, and >20%), was obtained from the Centers for Disease Control and Prevention's (CDC) 2016 Social Vulnerability Index dataset.⁴⁹

The county urbanization levels were categorized as large central metro, large fringe metro, medium metro, small metro, micropolitan, and noncore based on the 2013 National Center for Health Statistics (NCHS) urban-rural classification scheme for counties,⁵⁰ which identified six levels of urbanization. One represented “Large central metro counties in metropolitan statistical areas (MSA) of 1 million population that contained the entire population of the largest principal city of the MSA”, and 6 represented “Noncore counties

not in micropolitan statistical areas". The Child Opportunity Index 2.0, developed at the Heller School for Social Policy and Management at Brandeis University, combined 29 census tract level indicators across educational, healthy environmental, economic, and social domains and has been associated with a variety of health outcomes and chronic disease risk factors.⁵¹ The COI levels were from 2015 and were categorized as very low, low, moderate, high, and very high, which measure conditions and resources conducive to healthy child development.⁵¹

The study protocol did not require Institutional Review Board (IRB) review because of the use of secondary de-identified data not involving "human subjects" (as defined by federal regulations and guidance). Additionally, the data used in the study has received clearance from Circana.

Outcome Variables

This study reported three measures of SSB and bottled water purchases: (1) Annual per capita spending on SSBs, (2) Daily per capita total SSB calories purchased, which included calories both from added sugars and all other ingredients, and (3) Annual per capita spending on bottled water. Per capita spending values were in 2015 U.S. dollars. The list of SSBs included in the study based on the Circana product categories consisted of aseptic juices, bottled juices, sweetened bottled water, canned juices, carbonated beverages, cocktail mixes, coffee (included pre-sweetened and not reconstituted instant coffee), drink mixes (e.g., powdered flavored drink or horchata), energy drinks, juice and drink concentrates, frozen and refrigerated juices (included drinks that are not 100% juice), non-fruit drinks, sports drinks, and ready-to-drink tea and coffee. Beverages with no added sugars, such as 100% fruit juices were not included in the study. Per capita annual measures were calculated by dividing the annual household spending on the respective category (SSBs or bottled water) by the number of household members; daily per capita SSB calories purchased was further divided by 365 (number of days in a year) to get daily values.

Statistical Analysis

We compared the unadjusted and multivariable adjusted mean values (adjusted for all explanatory variables) by household demographic, socioeconomic, and geographic characteristics using linear regression analysis in Stata 16.1.⁵² Circana's household projection factors were applied in all analyses. Statistical significance (at the 0.05 level) of differences in means was obtained from the regression analysis based on the respective coefficients on each variable.

Results

Table 1 describes household demographic, socioeconomic, and geographic characteristics, and the descriptive statistics of SSB and bottled water purchases, adjusted by the Circana household projection factors. Of the 63,610 households, the vast majority purchased SSBs (95.0%) and bottled water (70.0%) at least once during 2015, annually spending about \$45.8 (interquartile range [IQR]: \$46.4) per person on SSBs and \$10.6 (IQR: \$9.9) on bottled water. Household SSB purchases corresponded to 217.4 kcal of SSB per person per day

(IQR: 208.5 kcal). Overall, 40.4% of household heads were 40–59 years old, 61.8% of household heads were married, 54.3% were college graduates, 43.1% had family income of greater than 350% FPL, and 70.9% of primary respondents were NH White. About 33% of households had at least one child (less than 18 years) in the home, and 69.3% of households lived in counties where the poverty prevalence was more than 10%–20%. More than half of the households lived in either large central metro (28.2%) or large fringe metro (26.6%) counties, 38.0% lived in the West, and about 35% are in census tract regions with low (20.1%) or very low (14.7%) COI levels.

Table 2 illustrates unadjusted and multivariable adjusted mean values of annual per capita spending on SSB and daily per capita SSB calories purchased. Based on the adjusted means, both measures of SSB purchases were higher among households with head(s) aged 40–59 years (\$52.1, 260.8 kcal), with or without a high school diploma, or households with household income below 131 percent of FPL, compared to the respective reference groups. Based on the unadjusted means, households with head(s) aged 60 and over had higher annual per capita spending on SSBs but fewer daily per capita SSB calories purchased compared to households with head(s) aged 18–39. However, after adjusting for household demographic, socioeconomic, and geographic characteristics, households with head(s) aged 60 and over had lower annual per capita spending on the SSBs compared to the reference group, and the difference in the daily per capita SSB calories purchased became statistically insignificant. Households with married heads had lower annual per person spending on SSBs but purchased more calories from SSBs than households with never married/widowed/divorced heads.

Compared to households with NH White primary respondents, those with NH Black and NH Other primary respondents spent more on SSBs, while households with NH Asian primary respondents spent less, and there was no statistically significant difference between households with NH White and Hispanic primary respondents. Compared to households with NH Black primary respondents, those with NH Asian and Hispanic primary respondents spent less on SSBs, and the difference between households with NH Black and NH Other primary respondents was not statistically significant. That is, households with NH Black and NH Other primary respondents spent the most on SSBs, followed by those with NH White and Hispanic primary respondents, while household with NH Asian primary respondents spent the least. However, based on the differences in estimated adjusted means, compared to households with NH White primary respondents, both households with NH Black and Hispanic primary respondents purchased about 48 more calories from SSBs per person/day, while those with NH Asian respondents purchased about 46 fewer calories from SSBs per person/day, and there was no statistically significant difference between households with NH White and NH Other primary respondents. That is, households with NH Black and Hispanic primary respondents purchased the highest number of calories from SSBs, with no statistically significant difference between the two groups, followed by those with NH White and NH Other primary respondents, and NH Asians. Households with at least one child under 18 spent less on SSBs but purchased about 80 more calories per person/day than those with no children.

Households residing in medium or small metro, micropolitan, or noncore (rural) counties had higher per capita annual spending on SSBs than households residing in large central metro counties, but the difference in calories purchased was only statistically significant between large central metro residents and medium metro or noncore county residents. While no statistically significant difference was observed in the annual per capita spending on SSBs between households residing in different census regions, households residing in the Midwest purchased the highest number of calories from SSBs compared to those residing in other regions. Compared to households residing in census tracts with very low COI levels, those residing in census tracts with moderate-to-very-high COI levels had lower spending on SSBs and purchased fewer calories from SSBs.

Based on the unadjusted means, households with Hispanic primary respondents had lower spending on SSBs compared to those with NH White primary respondents, while the difference became statistically insignificant after controlling for the household demographic, socioeconomic, and geographic characteristics. The statistical significance of differences between other race and ethnicity group comparisons did not change after controlling for the household demographic, socioeconomic, and geographic characteristics. Similarly, based on the unadjusted means, households residing in counties with higher than 10% poverty prevalence had higher spending on SSBs and purchased more calories from SSBs than those residing in counties with poverty prevalence of 10%, but the differences became statistically insignificant in the multivariable adjusted means. The unadjusted means also suggested that there were differences in spending on SSBs among households residing in the Midwest and the South or West, while no such differences were observed in the adjusted means.

Table 3 illustrates unadjusted and multivariable adjusted mean values of bottled water purchases by household characteristics. Based on the adjusted means, annual per capita spending on bottled water was higher among households whose head was aged 40–59 years (compared to those aged 18–39); never married/widowed/divorced (compared to those with married household heads); NH Black, NH Other, or Hispanic primary respondents (compared to NH White primary respondents); households without children (compared to those with at least one child under 18); households residing in the Midwest (compared to the Northeast or West); or in census tracts with very low COI levels (compared to those in census tracts with high or very high COI levels). While these differences in the annual per capita spendings on bottled water were statistically significant, the magnitude of most differences based on the estimated adjusted means was rather small (around \$2). The largest difference was observed between household with NH White and NH Black primary respondents (a difference of almost \$7). Based on the unadjusted means, households whose head was aged 60 and over (compared to those aged 18–39), was NH White (compared to NH Asian), or had no high school diploma (compared to those who had some college education) had higher spending on bottled water. However, after controlling for household demographic, socioeconomic, and geographic characteristics, these differences became statistically insignificant.

Discussion

In this study, almost all households reported purchasing SSBs at least once during 2015. In addition, the groups that spent the most on SSBs and the groups that purchased the highest number of SSB calories were not always the same. For example, compared to households with no children, those with at least one child under 18 spent less on SSBs but purchased more calories from SSBs. One explanation for this might be that households with children purchased SSBs in larger quantities or in bulk, which could potentially reduce the dollar amount spent on SSBs even though SSB calories were higher. Another explanation, which also applies to the observed differences between households with primary respondents of different races and ethnicities is that different demographic and socioeconomic groups may purchase different types of SSBs, and the caloric content and unit prices may vary based on the purchased SSB type and brand.

In line with the findings of the present study, based on the 2000–2014 Nielsen HomeScan Panel data, compared to households with NH White primary respondents, households with NH Black and Hispanic primary respondents purchased a larger percent of beverages with caloric sweeteners in relation to all types of purchased beverages (+9% for NH Black and +4% for Hispanic primary respondents),⁵³ and households with NH Black primary respondents purchased up to 1.24 times more SSB calories.⁴² Similar racial disparities in SSB purchases/consumption have been reported in the literature based on different data sources and years.^{54,55} Although a direct comparison cannot be made because the Circana Consumer Network provides household-level purchase data, while NHANES provides individual-level intake data for adults, a study based on 2015–2018 NHANES found that the mean energy intake from SSBs was significantly higher among males (122 kcal/day), adults aged 19–29 (113 kcal/day) adults aged 30–59 (114 kcal/day), or adults with lower household income (119 kcal/day) than the respective reference groups.⁷

To our knowledge, this is the first paper to analyze differences in bottled water purchases among different demographic and socioeconomic groups using a nationally representative household panel of retail food and beverage purchases. We found that 7 in 10 households reported purchasing bottled water at least once during 2015. Bottled water purchase differed by demographic, socioeconomic, and geographic characteristics. The finding that households with a primary shopper who is a racial or ethnic minority and households of lower socioeconomic status spent more on bottled water than their counterparts is consistent with the existing literature. Based on 2011–2018 NHANES, bottled water intake was higher among adults aged 20–39 or 40–59, NH Black or Hispanic adults, females, those with lower household income, and adults with lower education level than their counterparts.³³ Other studies also reported avoidance of tap water by racial and ethnic minorities and those of low socioeconomic status.³² These households preferred bottled water over tap water because they perceived tap water to be unsafe, which, although uncommon, can be a valid concern, especially since there are over 9.2 million lead service lines in the U.S.⁵⁶ Even so, current evidence suggests that tap water is more regulated than bottled water and the latter is not safer on average than the former.^{30,57–60} The majority of the U.S. population gets its drinking water from a public water system, and drinking water in U.S. is among the safest globally.²⁹ Unlike most bottled water, most tap water in the U.S. provides oral health

benefits because of water fluoridation.^{61,62} About 73% of the U.S. population on community water systems had access to fluoridated tap water.⁶³ Even though decades of research suggests that water fluoridation has been a successful public health strategy to reduce the prevalence of dental caries, there has been a growing worldwide opposition to this practice due to the potential risk of toxicity.⁶⁴ Tap water is also cheaper and more environmentally friendly than bottled water, particularly because of the incineration of used plastic bottles and the CO₂ emissions resulting from high energy consumption in the production and transportation of bottled water.^{65,66}

In this study, the households with a primary shopper who was a member of a racial or ethnic minority (compared to households with a NH White primary shopper), and households of lower socioeconomic status (compared to households of higher socioeconomic status) spent more money on purchasing both SSBs and bottled water. Given that tap water quality violations and contamination are more likely to happen in communities of lower socioeconomic status and large Black and Hispanic populations,³⁶ one potential explanation for why these groups had higher spending on bottled water is that they may perceive tap water to be unsafe or of lower quality than bottled water. Another explanation for purchasing bottled water is that consumers prefer the taste, which has been found to be a major factor in choosing between tap water and bottled water.⁶⁷ Tap water avoidance is also associated with higher SSB intake³⁵ and negative health risk factors, such as excess weight gain⁶⁸ and higher risk of dental caries.⁶⁹ Additionally, this study was based on 2015 data, which is when the Flint, Michigan was found to have high concentrations of lead (mid 2014–2016).⁷⁰ Thus, news coverage about the Flint water crisis may have raised concerns about tap water safety among these populations,^{32,70–72} further contributing to the disparities in bottled water and SSB purchases among different demographic and socioeconomic groups.

One of the major novelties of this study is the comparison of SSB and bottled water purchases by the COI levels of census tracts of households' residence, suggesting that children already at potentially increased risk for adverse health and economic outcomes were also most exposed to SSBs in the household. We found that all three measures were negatively associated with the COI levels, meaning that households residing in counties with better conditions and resources conducive to healthy child development spent less on SSBs and bottled water and the purchased SSBs contained fewer calories per person. Another study using the 2010–2018 Nielsen HomeScan Panel data, found that rural households purchased more SSB calories from grocery stores, mass merchandizers, dollar, and convenience/drug stores than urban households, while households with low incomes purchased more SSB calories at almost every store type both in rural and urban areas than did households with higher incomes.⁷³ Assuming tap water avoidance is one of the contributors to the disparities in the three measures based on rurality, region, poverty, COI levels, and area deprivation, the findings suggest that there is a double burden of cost and health effects. That is, any alternative to tap water may cause a financial burden on the food budgets of households with low socioeconomic status or those residing in census tracts with low COI levels, without providing the benefits of drinking (fluoridated) tap water.

The study has several limitations. First, while the survey weights helped to account for differences between the composition of the static panel and the general U.S. population,

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

it is possible that households meeting the requirements for being included in the static panel had different purchasing behaviors than those who did not participate in the survey or provided insufficient data to be included in the static panel.⁴⁵ Second, the data only included retail purchases, thus omitting SSB and bottled water purchases from food-away-from-home (FAFH) sources, such as restaurants, bars, and institutions such as hospital or college cafeterias. Since FAFH purchases differ by socioeconomic status (e.g., households with higher incomes spending more on FAFH than those with lower incomes⁷⁴), not accounting for SSB and bottled water purchases from these sources may have impacted the differences in the findings. However, this is not a major concern, because store-bought purchases represent the vast majority of beverage/SSB calories consumed in the U.S.⁷⁵ Third, we did not analyze the SSB subtypes and interactions between variables, which may further elucidate the differences in the three measures between population subgroups. Fourth, because some SSB products could not be linked with the USDA nutrition information and are not included in the dataset (as described in the Data Sources section), our estimates of SSB purchases may be underestimated and might affect some of the differences observed between groups in unknown ways. There were also small differences in the linkage rates of nutrition data for different types of beverages between households of different income groups and primary shoppers' race or ethnicity. Lastly, because the study is based on 2015 data, which was the latest available year of the PPC data when the study began, current SSB and bottled water purchases may be different from those reported in the study.

Conclusions

Nearly all households reported purchasing SSBs at least once during 2015 and about 7 in 10 households reported purchasing bottled water. We found that even after controlling for household characteristics, area level variables such as rurality and the COI were still statistically significant indicators of SSB and bottled water purchases. These findings suggest that households that had lower socioeconomic status, also had higher annual per capita spending on SSBs and bottled water and higher daily per capita total SSB calories purchased than those with higher socioeconomic status.

References

1. U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th Edition. https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf. Accessed 1/9/2022,
2. Bowman SA, Clemens JC, Friday JE, LaComb RP, Paudel D, Shimizu M. Added sugars in adults' diet: What We Eat in America, NHANES 2015–2016. October, 2019. Food Surveys Research Group Dietary Data Brief No 24. Accessed 6/23/2022. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/DBrief/24_Sources_of_Added_Sugars_in_Adults'_Diet_2015-2016.pdf
3. Bleich SN, Vercammen KA, Koma JW, Li Z. Trends in beverage consumption among children and adults, 2003–2014. *Obesity* (Silver Spring). Feb 2018;26(2):432–441. doi:10.1002/oby.22056 [PubMed: 29134763]
4. Dai J, Soto MJ, Dunn CG, Bleich SN. Trends and patterns in sugar-sweetened beverage consumption among children and adults by race and/or ethnicity, 2003–2018. *Public health nutrition*. 2021;24(9):2405–2410. doi:10.1017/S1368980021001580 [PubMed: 33843567]
5. Martin CB, Wambogo EA, Ahluwalia N, Ogden CL. Nonalcoholic beverage consumption among adults: United States, 2015–2018. 2020;

6. Chevinsky JR, Lee SH, Blanck HM, Park S. Prevalence of self-reported intake of sugar-sweetened beverages among US adults in 50 States and the District of Columbia, 2010 and 2015. Preventing chronic disease. Apr 15 2021;18:E35. doi:10.5888/pcd18.200434 [PubMed: 33856977]
7. Dunford EK, Popkin B, Ng SW. Junk food intake among adults in the United States. The journal of nutrition. Jul 5 2021;doi:10.1093/jn/nxab205
8. Imoisili O, Park S, Lundeen EA, et al. Sugar-sweetened beverage intake among adults, by residence in metropolitan and nonmetropolitan counties in 12 states and the District of Columbia, 2017. Preventing chronic disease. Jan 23 2020;17:E07. doi:10.5888/pcd17.190108 [PubMed: 31971897]
9. Larson NI, Story MT, Nelson MC. Neighborhood environments: disparities in access to healthy foods in the US. American Journal of Preventive Medicine. 2009;36(1):74–81. e10. doi:10.1016/j.amepre.2008.09.025 [PubMed: 18977112]
10. Ghazaryan A, Carlson AC, Rhone A, Roy K. Association between County-Level Food Retail and Socioeconomic Environment and Nutritional Quality of Household Food Purchases, 2015. Journal of the Academy of Nutrition and Dietetics. 2022;doi:10.1016/j.jand.2022.10.015
11. Cummins S, Flint E, Matthews SA. New neighborhood grocery store increased awareness of food access but did not alter dietary habits or obesity. Health Affairs. 2014;33(2):283–291. doi:10.1377/hlthaff.2013.0512 [PubMed: 24493772]
12. Gustafson A, Hankins S, Jilcott S. Measures of the consumer food store environment: a systematic review of the evidence 2000–2011. Journal of Community Health. 2012;37(4):897–911. doi:10.1007/s10900-011-9524-x [PubMed: 22160660]
13. Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight gain: a systematic review. The American journal of clinical nutrition. 2006;84(2):274–288. doi:10.1093/ajcn/84.1.274 [PubMed: 16895873]
14. Malik VS, Hu FB. Sweeteners and risk of obesity and type 2 diabetes: The role of sugar-sweetened beverages. Current diabetes reports. 2012;12:195–203. doi:10.1007/s11892-012-0259-6
15. Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes care. 2010;33(11):2477–2483. doi:10.2337/dc10-1079 [PubMed: 20693348]
16. de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. The American journal of clinical nutrition. 2011;93(6):1321–1327. doi:10.3945/ajcn.110.007922 [PubMed: 21430119]
17. de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't. Circulation. 2012;125(14):1735–41. doi:10.1161/CIRCULATIONAHA.111.067017 [PubMed: 22412070]
18. Huang C, Huang J, Tian Y, Yang X, Gu D. Sugar sweetened beverages consumption and risk of coronary heart disease: A meta-analysis of prospective studies. Atherosclerosis. Feb 15 2014;234(1):11–16. doi:10.1016/j.atherosclerosis.2014.01.037 [PubMed: 24583500]
19. Bernabe E, Vehkalahti MM, Sheiham A, Aromaa A, Suominen AL. Sugar-sweetened beverages and dental caries in adults: a 4-year prospective study. Journal of dentistry. Aug 2014;42(8):952–8. doi:10.1016/j.jdent.2014.04.011 [PubMed: 24813370]
20. Valenzuela MJ, Waterhouse B, Aggarwal VR, Bloor K, Doran T. Effect of sugar-sweetened beverages on oral health: a systematic review and meta-analysis. European journal of public health. Aug 23 2020;doi:10.1093/eurpub/ckaa147
21. Malik AH, Akram Y, Shetty S, Malik SS, Yanchou Njike V. Impact of sugar-sweetened beverages on blood pressure. American journal of cardiology. May 1 2014;113(9):1574–1580. doi:10.1016/j.amjcard.2014.01.437 [PubMed: 24630785]
22. Stanhope KL, Medici V, Bremer AA, et al. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. The American journal of clinical nutrition. Jun 2015;101(6):1144–54. doi:10.3945/ajcn.114.100461 [PubMed: 25904601]
23. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. Caloric sweetener consumption and dyslipidemia among US adults. JAMA. 2010;303(15):1490–1497. doi:10.1001/jama.2010.449 [PubMed: 20407058]

24. Park S, Akinbami LJ, McGuire LC, Blanck HM. Association of sugar-sweetened beverage intake frequency and asthma among U.S. adults, 2013. *Preventive medicine*. 2016;91:58–61. doi:10.1016/j.ypmed.2016.08.004 [PubMed: 27496394]

25. Dietary Guidelines Advisory Committee. Scientific report of the 2020 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Agriculture and the Secretary of Health and Human Services. US Department of Agriculture. 2020;

26. Popkin B, D'Anci K, Rosenberg I. Water, hydration, and health. *Nutrition reviews*. 2010;68(8):439–458. doi:10.1111/j.1753-4887.2010.00304.x [PubMed: 20646222]

27. Hernández-Cordero S, Barquera S, Rodríguez-Ramírez S, et al. Substituting water for sugar-sweetened beverages reduces circulating triglycerides and the prevalence of metabolic syndrome in obese but not in overweight Mexican women in a randomized controlled trial. *The journal of nutrition*. November 1, 2014 2014;144(11):1742–1752. doi:10.3945/jn.114.193490 [PubMed: 25332472]

28. An R, McCaffrey J. Plain water consumption in relation to energy intake and diet quality among US adults, 2005–2012. *Journal of human nutrition and dietetics*. Feb 22 2016;doi:10.1111/jhn.12368

29. U.S. Environmental Protection Agency. How does your WATER SYSTEM WORK? <https://www.epa.gov/sites/production/files/2017-10/documents/epa-ogwdw-publicwatersystems-final508.pdf>. Accessed 1/9/2022,

30. Javidi A, Pierce G. US households' perception of drinking water as unsafe and its consequences: Examining alternative choices to the tap. *Water resources research*. 2018;54(9):6100–6113. doi:10.1029/2017WR022186

31. Bass D, McFadden B, Costanigro M, Messer K. Implicit and Explicit Biases for Recycled Water and Tap Water. *Water resources research*.e2021WR030712. doi:10.1029/2021WR030712

32. Rosinger AY, Young SL. In-home tap water consumption trends changed among US children, but not adults, between 2007 and 2016. *Water resources research*. 2020;56(7):e2020WR027657. doi:10.1029/2020WR027657

33. Rosinger AY, Patel AI, Weakls F. Examining recent trends in the racial disparity gap in tap water consumption: NHANES 2011–2018. *Public health nutrition*. Jun 11 2021;1–7. doi:10.1017/S1368980021002603

34. Boesler M. Bottled Water Costs 2000 Times As Much As Tap Water. *Business Insider*. 2013. Accessed 5/20/2022. <https://www.businessinsider.com/bottled-water-costs-2000x-more-than-tap-2013-7>

35. Onufrak SJ, Park S, Sharkey JR, Sherry B. The relationship of perceptions of tap water safety with intake of sugar-sweetened beverages and plain water among US adults. *Public health nutrition*. Jan 2014;17(1):179–85. doi:10.1017/S1368980012004600 [PubMed: 23098620]

36. Switzer D, Teodoro MP. Class, race, ethnicity, and justice in safe drinking water compliance. *Social science quarterly*. 2018;99(2):524–535. doi:10.1111/ssqu.12397

37. Zivin JG, Neidell M, Schlenker W. Water quality violations and avoidance behavior: Evidence from bottled water consumption. *American economic review*. 2011;101(3):448–53. doi:10.1257/aer.101.3.448

38. Bogart LM, Elliott MN, Ober AJ, et al. Home Sweet Home: Parent and Home Environmental Factors in Adolescent Consumption of Sugar-Sweetened Beverages. *Academic pediatrics*. Jul 2017;17(5):529–536. doi:10.1016/j.acap.2017.01.015 [PubMed: 28143794]

39. Haughton CF, Waring ME, Wang ML, Rosal MC, Pbert L, Lemon SC. Home Matters: Adolescents Drink More Sugar-Sweetened Beverages When Available at Home. *The journal of pediatrics*. Nov 2018;202:121–128. doi:10.1016/j.jpeds.2018.06.046 [PubMed: 30029864]

40. Vercammen KA, Moran AJ, Soto MJ, Kennedy-Shaffer L, Bleich SN. Decreasing trends in heavy sugar-sweetened beverage consumption in the United States, 2003 to 2016. *Journal of the academy of nutrition and dietetics*. 2020;120(12):1974–1985. e5. doi:10.1016/j.jand.2020.07.012 [PubMed: 32981886]

41. Rosinger AY, Herrick K, Gahche J, Park S. Sugar-sweetened beverage consumption among U.S. adults, 2011–2014. *NCHS data brief*. Jan 2017;(270):1–8.

42. Valizadeh P, Popkin BM, Ng SW. Distributional changes in U.S. sugar-sweetened beverage purchases, 2002–2014. *American journal of preventive medicine*. Aug 2020;59(2):260–269. doi:10.1016/j.amepre.2020.02.002 [PubMed: 32362508]

43. Zhong Y, Auchincloss AH, Stehr MF, Langellier BA. Are price discounts on sugar-sweetened beverages (SSB) linked to household SSB purchases? - a cross-sectional study in a large US household and retail scanner database. *Nutrition journal*. Mar 14 2021;20(1):29. doi:10.1186/s12937-021-00673-w [PubMed: 33740986]

44. Singleton CR, Winkler M, Houghtaling B, et al. Understanding the intersection of race/ethnicity, socioeconomic status, and geographic location: A scoping review of US consumer food purchasing. *International journal of environmental research and public health*. 2020;17(20):7677. doi:10.3390/ijerph17207677 [PubMed: 33096828]

45. Muth MK, Sweitzer M, Brown D, et al. Understanding IRI household-based and store-based scanner data. U.S. Department of Agriculture ERS; April, 2016. Technical Bulletin Number 1942. Accessed 12/23/2021. https://www.ers.usda.gov/webdocs/publications/47633/57105_tb-1942.pdf?v=42473

46. Sweitzer M, Brown D, Karns S, Muth MK, Siegel P, Zhen C. Food-at-Home Expenditures: Comparing Commercial Household Scanner Data From IRI and Government Survey Data. U.S. Department of Agriculture ERS; September, 2017. Technical Bulletin Number 1946. Accessed 10/29/2021. <https://www.ers.usda.gov/publications/pub-details/?pubid=85251>

47. Carlson AC, Page ET, Zimmerman TP, Tornow CE, Hermansen S. Linking USDA Nutrition Databases to IRI Household-Based and Store-Based Scanner Data. U.S. Department of Agriculture ERS; March, 2019. Technical Bulletin Number 1952. Accessed 12/15/2021. <https://www.ers.usda.gov/publications/pub-details/?pubid=92570>

48. Carlson AC, Tornow CE, Page ET, Brown McFadden A, Palmer Zimmerman T. Development of the Purchase to Plate Crosswalk and Price Tool: Estimating Prices for the National Health and Nutrition Examination Survey (NHANES) Foods and Measuring the Healthfulness of Retail Food Purchases. *Journal of food composition and analysis*. 2022;106:104344. doi:10.1016/j.jfca.2021.104344

49. Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B. A social vulnerability index for disaster management. *Journal of homeland security and emergency management*. 2011;8(1):doi:10.2202/1547-7355.1792

50. Ingram D, Franco S. NCHS urban-rural classification scheme for counties. US Department of Health and Human Services, Centers for Disease Control and Prevention. National Center for Health Statistics. 2014;

51. Acevedo-Garcia D, McArdle N, Hardy EF, et al. The child opportunity index: improving collaboration between community development and public health. *Health affairs*. 2014;33(11):1948–1957. doi:10.1377/hlthaff.2014.0679 [PubMed: 25367989]

52. StataCorp. Stata Statistical Software: Release 16.1.

53. Piernas C, Ng SW, Popkin B. Trends in purchases and intake of foods and beverages containing caloric and low-calorie sweeteners over the last decade in the United States. *Pediatric obesity*. 2013;8(4):294–306. doi:10.1111/j.2047-6310.2013.00153.x [PubMed: 23529974]

54. Ng SW, Ostrowski JD, Li K-p. Trends in added sugars from packaged beverages available and purchased by US households, 2007–2012. *The American journal of clinical nutrition*. 2017;106(1):179–188. doi:10.3945/ajcn.117.153858 [PubMed: 28592597]

55. Grummon AH, Taillie LS. Supplemental Nutrition Assistance Program participation and racial/ethnic disparities in food and beverage purchases. *Public health nutrition*. 2018;21(18):3377–3385. doi:10.1017/S1368980018002598 [PubMed: 30305190]

56. Economic Analysis for the Final Lead and Copper Rule Revisions (December, 2020).

57. Doria MF. Bottled water versus tap water: understanding consumers' preferences. *Journal of water and health*. 2006;4(2):271–276. doi:10.2166/wh.2006.0023 [PubMed: 16813019]

58. Hu Z, Morton LW, Mahler RL. Bottled water: United States consumers and their perceptions of water quality. *International journal of environmental research and public health*. 2011;8(2):565–578. doi:10.3390/ijerph8020565 [PubMed: 21556204]

59. Pierce G, Gonzalez S. Mistrust at the tap? Factors contributing to public drinking water (mis) perception across US households. *Water policy*. 2017;19(1):1–12. doi:10.2166/wp.2016.143

60. Scherzer T, Barker JC, Pollick H, Weintraub JA. Water consumption beliefs and practices in a rural Latino community: implications for fluoridation. *Journal of public health dentistry*. 2010;70(4):337–343. doi:10.1111/j.1752-7325.2010.00193.x [PubMed: 20735717]

61. Gillcrist JA, Brumley DE, Blackford JU. Community fluoridation status and caries experience in children. *Journal of public health dentistry*. 2001;61(3):168–71. doi:10.1111/j.1752-7325.2001.tb03385.x [PubMed: 11603320]

62. Armfield JM, Spencer AJ, Roberts-Thomson KF, Plastow K. Water fluoridation and the association of sugar-sweetened beverage consumption and dental caries in Australian children. *American journal of public health*. 2013;103(3):494–500. doi:10.2105/AJPH.2012.300889 [PubMed: 23327241]

63. Division of Oral Health. 2018 Fluoridation Statistics. National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention. Accessed 10/20/2022, <https://www.cdc.gov/fluoridation/statistics/2018stats.htm>

64. Aoun A, Darwiche F, Al Hayek S, Doumit J. The fluoride debate: the pros and cons of fluoridation. *Preventive nutrition and food science*. 2018;23(3):171. doi:10.3746/pnf.2018.23.3.171 [PubMed: 30386744]

65. Younos T. Bottled water: global impacts and potential. *The handbook of environmental chemistry: potable water* 2014:213–227. doi:10.1007/978-3-319-06563-2_8,

66. Qian N. Bottled water or tap water? A comparative study of drinking water choices on university campuses. *Water*. 2018;10(1):59. doi:10.3390/w10010059

67. Delpla I, Legay C, Proulx F, Rodriguez MJ. Perception of tap water quality: Assessment of the factors modifying the links between satisfaction and water consumption behavior. *Science of the total environment*. 2020;722:137786. doi:10.1016/j.scitotenv.2020.137786 [PubMed: 32208246]

68. Schwartz AE, Leardo M, Aneja S, Elbel B. Effect of a school-based water intervention on child body mass index and obesity. *JAMA pediatrics*. 2016;170(3):220–226. doi:10.1001/jamapediatrics.2015.3778 [PubMed: 26784336]

69. Sanders AE, Slade GD. Blood lead levels and dental caries in US children who do not drink tap water. *American journal of preventive medicine*. 2018;54(2):157–163. doi:10.1016/j.amepre.2017.09.004 [PubMed: 29191396]

70. Jackson DZ. Environmental justice? Unjust coverage of the Flint water crisis. Shorenstein center on media, politics and public policy. 2017;

71. Hanna-Attisha M, LaChance J, Sadler RC, Champney Schnepp A. Elevated blood lead levels in children associated with the Flint drinking water crisis: a spatial analysis of risk and public health response. *American journal of public health*. 2016;106(2):283–290. doi:10.2105/AJPH.2015.303003 [PubMed: 26691115]

72. Butler LJ, Scammell MK, Benson EB. The Flint, Michigan, water crisis: A case study in regulatory failure and environmental injustice. *Environmental justice*. 2016;9(4):93–97. doi:10.1089/env.2016.0014

73. Lacko A, Ng SW, Popkin B. Urban vs. rural socioeconomic differences in the nutritional quality of household packaged food purchases by store type. *International journal of environmental research and public health*. 2020;17(20):7637. doi:10.3390/ijerph17207637 [PubMed: 33092077]

74. Saksena MJ, Okrent AM, Anekwe TD, et al. America's eating habits: food away from home. U.S. Department of Agriculture ERS; September, 2018. Economic Information Bulletin Number 196. Accessed 12/21/2021. <https://www.ers.usda.gov/publications/pub-details/?pubid=90227>

75. Ng SW, Poti JM, Popkin BM. Trends in racial/ethnic and income disparities in foods and beverages consumed and purchased from stores among US households with children, 2000–2013. *The American journal of clinical nutrition*. 2016;104(3):750–759. doi:10.3945/ajcn.115.127944 [PubMed: 27488233]

Research Snapshot

Research Questions:

What are the differences in sugar-sweetened beverages (SSBs) and bottled water purchasing based on both household level characteristics, as well as area level characteristics? What are the costs spent on purchasing SSB and bottled water from retail stores among U.S. households?

Key Findings:

Nearly all households reported purchasing SSBs at least once during 2015 and spent on average \$47 (interquartile range [IQR]: \$20) per person per year on SSBs, which corresponded to 211 kcal (IQR: 125 kcal) of SSBs per person per day. About 7 in 10 households reported purchasing bottled water at least once during 2015 and spent \$11 (IQR: \$5) per person on bottled water per year. Households that had lower socioeconomic status also had higher annual per capita spending on SSBs and bottled water and higher daily per capita total SSB calories purchased than households with higher socioeconomic status.

Table 1.

Demographic and Socioeconomic Characteristics of Households and Descriptive Statistics of Sugar-Sweetened Beverage and Bottled Water Purchases from U.S. Retail Stores, 2015 (N=63,610)

	Mean ^a (95% CI ^b)
Purchase Prevalence	
Sugar-Sweetened Beverages (SSB)	0.95 (0.95; 0.96)
Bottled Water	0.70 (0.70; 0.71)
Purchase Measures	
Annual Per Capita Spending on SSB (in 2015 USD)	45.84 (45.19; 46.49) Interquartile range (IQR): 46.37
Daily Per Capita SSB Calories Purchased	217.39 (211.93; 222.84) IQR: 208.55
Annual Per Capita Spending on Water (in 2015 USD)	10.66 (10.40; 10.91) IQR: 9.9
Age of Household Head^c	
18–39	0.26 (0.26; 0.27) ^d
40–59	0.40 (0.40; 0.41)
60 and over	0.33 (0.33; 0.34)
Marital Status	
Never Married/Widowed/Divorced	0.38 (0.38; 0.39)
Married	0.62 (0.61; 0.62)
Race and Ethnicity	
Non-Hispanic White	0.71 (0.70; 0.71)
Non-Hispanic Black	0.11 (0.11; 0.11)
Non-Hispanic Asian	0.04 (0.04; 0.04)
Non-Hispanic Other	0.02 (0.02; 0.03)
Hispanic	0.12 (0.11; 0.12)
Highest Education Level^e	

		Mean ^a (95% CI ^b)
Purchase Prevalence	<High School	0.01 (0.01; 0.02)
	High School Graduate	0.17 (0.16; 0.17)
	Some College	0.28 (0.27; 0.28)
	College Graduate	0.35 (0.35; 0.35)
	Postgraduate	0.19 (0.19; 0.20)
Family Income Relative to Federal Poverty		
	130% or less FPL	0.15 (0.15; 0.16)
	More than 130% through 350% FPL	0.42 (0.41; 0.42)
	More than 350% FPL	0.43 (0.43; 0.44)
Children <18 years in home		
No		0.67 (0.66; 0.67)
Yes		0.33 (0.33; 0.34)
Poverty Prevalence of County		
	10% or less	0.19 (0.18; 0.19)
	More than 10% through 20%	0.69 (0.69; 0.70)
	More than 20%	0.12 (0.12; 0.12)
County Urbanization Level		
	Large Central Metro	0.28 (0.28; 0.29)
	Large Fringe Metro	0.27 (0.26; 0.27)
	Medium Metro	0.21 (0.21; 0.21)
	Small Metro	0.10 (0.10; 0.10)
	Micropolitan	0.09 (0.09; 0.09)
	Noncore	0.05 (0.05; 0.06)
Census Region		
	Northeast	0.18 (0.18; 0.18)
	Midwest	0.22 (0.22; 0.23)
	West	0.38 (0.38; 0.38)
	South	0.22 (0.21; 0.22)
Child Opportunity Index Level		
Very Low		0.15 (0.14; 0.15)
Low		0.20 (0.20; 0.21)

Purchase Prevalence	Mean ^a (95% CI ^b)
Moderate	0.24 (0.24; 0.25)
High	0.23 (0.23; 0.24)
Very High	0.18 (0.17; 0.18)

Note: The analysis, findings, and conclusions expressed in this report should not be attributed to Circana (formerly Information Resources Inc. [IRI]).

^aWeighted percent may not add up to 100% because of rounding.

^bConfidence interval.

^cFor households with two heads, age represents the average age of both household heads.

^dSource: Model estimates using data from the 2015 Circana Consumer Network Panel static panel. Circana projection factors/survey weights applied.
^eFor households with two heads (who were likely to make joint food purchase decisions even if only one was the primary shopper), education represents the highest educational attainment amongst them

Mean Values of Sugar-Sweetened Beverage (SSB) Purchase Measures by Household Characteristics^a

Table 2.

Characteristic	Annual Per Capita Spending on SSB (in 2015 USD)				Daily Per Capita SSB Calories Purchased			
	Unadjusted Mean (95% CI) ^b	p-value ^c	Multivariable Adjusted Mean ^d (95% CI)	p-value	Unadjusted Mean (95% CI)	p-value	Multivariable Adjusted Mean (95% CI)	p-value
Age of Household Head^e								
18-39 (reference [ref.])	39.5 (38.1; 40.9)		46.6 (45.0; 48.2)		216.3 (201.1; 231.6)		184.4 (171.5; 197.2)	
40-59	50.1 (49.1; 51.2)	<0.001	52.1 (51.0; 53.2)	<0.001	263.3 (255.5; 271.1)	<0.001	260.8 (253.2; 268.4)	<0.001
60 and over	45.6 (44.7; 46.6)	<0.001	37.5 (36.5; 38.6)	<0.001	162.2 (156.6; 167.8)	<0.001	190.7 (182.6; 198.8)	0.380
Marital Status								
Never Married/Widowed/Divorced (ref.)	56.4 (55.0; 57.7)		51.6 (50.3; 52.9)		170.9 (163.6; 178.1)		171.2 (162.7; 179.6)	
Married	39.3 (38.7; 40.0)	<0.001	42.3 (41.5; 43.0)	<0.001	246.2 (238.6; 253.8)	<0.001	246.0 (239.3; 252.7)	<0.001
Race and Ethnicity								
Non-Hispanic White (ref.)	45.6 (44.9; 46.3)		45.0 (44.3; 45.7)		206.0 (201.1; 211.0)		208.1 (202.7; 213.4)	
Non-Hispanic Black	55.9 (53.8; 58.0)	<0.001	53.6 (51.5; 55.8)	<0.001	253.1 (239.7; 266.5)	<0.001	255.9 (241.7; 270.1)	<0.001
Non-Hispanic Asian	31.6 (28.6; 34.6) ^f	<0.001	39.7 (36.7; 42.8) ^f	0.001	142.7 (125.0; 160.3) ^f	<0.001	162.4 (143.8; 181.0) ^f	<0.001
Non-Hispanic Other	52.9 (47.7; 58.2) ^g	0.006	52.8 (47.6; 57.9) ^g	0.003	208.0 (183.3; 232.7) ^{f,g}	0.880	208.5 (183.9; 233.1) ^{f,g}	0.975
Hispanic	41.2 (38.6; 43.7) ^{f,g,h}	0.001	44.4 (41.9; 46.8) ^{f,g,h}	0.660	277.8 (245.7; 310.0) ^{f,g,h}	<0.001	256.6 (224.5; 288.8) ^{f,g,h}	0.004
Highest Education Levelⁱ								
<High School (ref.)	63.6 (56.4; 70.8)		57.7 (50.6; 64.8)		291.0 (246.7; 333.3)		289.7 (246.4; 332.9)	
High School Graduate	59.6 (57.7; 61.5)	0.289	56.1 (54.2; 58.0)	0.666	260.4 (247.8; 273.0)	0.193	258.0 (245.0; 271.0)	0.167
Some College	50.6 (49.1; 52.0)	<0.001	49.1 (47.8; 50.5)	0.021	247.8 (236.2; 259.5)	0.065	239.0 (227.7; 250.3)	0.027
College Graduate	41.4 (40.5; 42.4)	<0.001	42.6 (41.7; 43.6)	<0.001	201.4 (191.5; 211.3)	<0.001	201.2 (192.0; 210.5)	<0.001
Postgraduate	33.9 (32.8; 34.9)	<0.001	37.2 (36.0; 38.3)	<0.001	160.1 (151.8; 168.3)	<0.001	175.2 (166.1; 184.3)	<0.001
Family income relative to federal poverty								
130% or less FPL (ref.)	55.9 (53.4; 58.4)		50.8 (48.2; 53.4)		304.1 (285.5; 322.7)		284.3 (265.7; 303.0)	
More than 130% through 350% FPL	48.7 (47.7; 49.7)	<0.001	46.4 (45.4; 47.3)	0.002	224.6 (217.3; 231.9)	<0.001	225.5 (218.0; 233.0)	<0.001

Characteristic	Annual Per Capita Spending on SSB (in 2015 USD)			Daily Per Capita SSB Calories Purchased		
	Unadjusted Mean (95% CI) ^b	p-value ^c	Multivariable Adjusted Mean ^d (95% CI)	p-value	Unadjusted Mean (95% CI)	p-value
Age of Household Head^e						
More than 350% FPL	39.5 (38.8; 40.3)	<0.001	43.6 (42.7; 44.4)	<0.001	179.9 (171.7; 188.0)	<0.001
Children <18 years in home						
No (ref.)	51.6 (50.8; 52.5)		51.6 (50.6; 52.6)		181.1 (176.5; 185.7)	190.6 (185.2; 196.0)
Yes	34.2 (33.4; 34.9)	<0.001	34.3 (33.2; 35.3)	<0.001	290.2 (276.7; 303.6)	<0.001
Poverty Prevalence of County						
10% or less (ref.)	41.3 (40.0; 42.5)		46.1 (44.6; 47.7)		198.4 (186.7; 210.2)	215.9 (202.8; 220.0)
More than 10% through 20%	46.1 (45.3; 46.9)	<0.001	45.7 (45.0; 46.5)	0.657	217.9 (211.3; 224.6)	0.005
More than 20%	51.5 (49.3; 53.7)	<0.001	45.9 (43.7; 48.1)	0.863	243.7 (228.1; 259.2)	<0.001
County Urbanization Level						
Large Central Metro (ref.)	44.3 (42.9; 45.7)		44.1 (42.8; 45.4)		200.5 (189.7; 211.4)	210.7 (199.7; 221.7)
Large Fringe Metro	42.4 (41.4; 43.5)	0.034	44.2 (43.0; 45.4)	0.923	199.5 (190.3; 208.7)	205.1 (195.9; 214.3)
Medium Metro	46.6 (45.2; 48.1)	0.022	46.9 (45.5; 48.3)	0.004	231.9 (222.2; 241.5)	<0.001
Small Metro	48.4 (46.5; 50.4)	0.001	47.7 (45.8; 49.6)	0.003	232.8 (204.3; 261.2)	0.038
Micropolitan	50.9 (48.7; 53.1)	<0.001	48.7 (46.5; 51.0)	0.001	240.8 (227.4; 254.2)	<0.001
Noncore	54.5 (51.6; 57.4)	<0.001	50.7 (47.8; 53.6)	<0.001	269.7 (252.8; 286.7)	<0.001
Census Region						
Midwest (ref.)	45.4 (43.9; 46.9)		46.3 (44.8; 47.8)		247.1 (230.1; 264.1)	263.0 (245.8; 280.2)
Northeast	45.5 (44.4; 46.7)	0.895	45.0 (43.8; 46.1)	0.172	233.5 (200.0; 227.1)	0.003
South	48.0 (46.9; 49.0)	0.005	46.7 (45.7; 47.7)	0.630	220.3 (213.7; 226.8)	0.004
West	42.8 (41.2; 44.4)	0.021	44.9 (43.4; 46.4)	0.198	191.6 (181.4; 201.9)	<0.001
Child Opportunity Index Level						
Very Low (ref.)	53.7 (51.9; 55.6)		48.8 (47.0; 50.7)		260.6 (242.5; 278.8)	247.2 (227.7; 266.7)
Low	50.4 (49.0; 51.8)	0.005	47.9 (46.5; 49.3)	0.406	246.6 (229.9; 263.4)	0.267
Moderate	46.4 (44.8; 48.0)	<0.001	46.1 (44.5; 47.6)	0.033	215.5 (207.5; 223.6)	<0.001
High	42.5 (41.3; 43.6)	<0.001	44.1 (43.0; 45.3)	<0.001	198.3 (190.3; 206.3)	0.001
Very High	37.8 (36.6; 39.0)	<0.001	43.0 (41.6; 44.3)	<0.001	175.9 (164.9; 187.0)	<0.001

Note: The analysis, findings, and conclusions expressed in this report should not be attributed to Circana (formerly Information Resources Inc. [IRI]).

^aSource: Model estimates using data from the 2015 Circana Consumer Network Panel static panel. Circana projection factors/survey weights applied to reflect national estimates.

^bConfidence interval.

^cP-values are obtained from linear regression analysis.

^dAdjusted means reflect inclusion of all variables presented in the table in the regression analysis.

^eFor households with two heads, age represents the average age of both household heads.

^fAn anonymous reviewer suggested comparisons by race and ethnicity to be reported for all group comparisons, instead of a single reference group. Subscript "F" indicates statistically significant difference at 0.05 significance level with the reference group being household with Non-Hispanic Black primary shoppers.

^gStatistically significant difference at 0.05 significance level with the reference group being households with Non-Hispanic Asian primary shoppers.

^hStatistically significant difference at 0.05 significance level with the reference group being households with Non-Hispanic Other primary shoppers.

ⁱFor households with two heads (who were likely to make joint food purchase decisions even if only one was the primary shopper), education represents the highest educational attainment amongst them.

Table 3.Annual Per Capita Spending on Bottled Water by Household Characteristics^a

Characteristic	Annual Per Capita Spending on Water (in 2015 USD)			
	Unadjusted Mean (95% CI) ^b	p-value ^c	Multivariable Adjusted Mean ^d (95% CI)	p-value
Age of Household Head^e				
18–39 (reference [ref.])	7.4 (7.0; 7.9)		9.4 (8.8; 10.0)	
40–59	11.6 (11.2; 12.0)	<0.001	11.8 (11.4; 12.3)	<0.001
60 and over	12.1 (11.7; 12.5)	<0.001	10.2 (9.7; 10.7)	0.074
Marital Status				
Never Married/Widowed/Divorced (ref.)	13.7 (13.1; 14.2)		12.2 (11.7; 12.7)	
Married	8.8 (8.6; 9.0)	<0.001	9.7 (9.4; 10.0)	<0.001
Race and Ethnicity				
Non-Hispanic White (ref.)	9.6 (9.3; 9.8)		9.4 (9.1; 9.7)	
Non-Hispanic Black	17.3 (16.4; 18.2)	<0.001	16.3 (15.4; 17.2)	<0.001
Non-Hispanic Asian	8.0 (7.0; 8.9) ^f	0.002	9.8 (8.7; 10.8) ^f	0.525
Non-Hispanic Other	14.6 (12.0; 17.3) ^g	<0.001	14.8 (12.2; 17.4) ^g	<0.001
Hispanic	11.0 (10.0; 11.9) ^{f,g,h}	0.005	12.3 (11.3; 13.2) ^{f,g}	<0.001
Highest Education Levelⁱ				
<High School (ref.)	14.3 (11.8; 16.7)		12.9 (10.5; 15.3)	
High School Graduate	13.5 (12.6; 14.5)	0.581	13.1 (12.1; 14.0)	0.907
Some College	11.3 (10.8; 11.8)	0.020	11.2 (10.8; 11.7)	0.192
College Graduate	9.8 (9.4; 10.1)	<0.001	10.1 (9.7; 10.4)	0.024
Postgraduate	8.5 (8.1; 9.0)	<0.001	8.7 (8.2; 9.1)	0.001
Family income relative to federal poverty				
130% or less FPL (ref.)	11.3 (10.5; 12.1)		10.3 (9.5; 11.2)	
More than 130% through 350% FPL	10.8 (10.3; 11.2)	0.259	10.2 (9.8; 10.6)	0.809
More than 350% FPL	10.3 (10.0; 10.6)	0.026	11.2 (10.9; 11.6)	0.065
Children <18 years in home				
No (ref.)	12.8 (12.4; 13.1)		12.4 (12.0; 12.8)	
Yes	6.4 (6.2; 6.6)	<0.001	7.1 (6.8; 7.5)	<0.001
Poverty Prevalence of County				
10% or less (ref.)	9.8 (9.2; 10.4)		10.6 (9.9; 11.3)	
More than 10% through 20%	10.5 (10.2; 10.7)	0.058	10.5 (10.2; 10.8)	0.754
More than 20%	13.1 (12.0; 14.1)	<0.001	11.6 (10.6; 12.6)	0.113
County Urbanization Level				
Large Central Metro (ref.)	11.4 (10.8; 11.9)		10.6 (10.1; 11.2)	
Large Fringe Metro	10.5 (10.0; 11.0)	0.015	10.7 (10.1; 11.2)	0.965
Medium Metro	10.1 (9.7; 10.6)	<0.001	10.4 (9.9; 10.8)	0.449

Characteristic	Annual Per Capita Spending on Water (in 2015 USD)			
	Unadjusted Mean (95% CI) ^b	p-value ^c	Multivariable Adjusted Mean ^d (95% CI)	p-value
Small Metro	10.3 (9.5; 11.0)	0.022	10.8 (10.0; 11.6)	0.729
Micropolitan	10.5 (9.6; 11.4)	0.094	10.9 (10.0; 11.8)	0.642
Noncore	11.0 (10.1; 12.0)	0.523	11.0 (10.1; 12.0)	0.493
Census Region				
Midwest (ref.)	11.8 (11.1; 12.4)		11.8 (11.1; 12.5)	
Northeast	8.3 (8.0; 8.7)	<0.001	8.6 (8.2; 9.0)	<0.001
South	12.0 (11.6; 12.4)	0.567	11.5 (11.1; 11.9)	0.494
West	9.8 (9.1; 10.5)	<0.001	10.3 (9.5; 11.0)	0.006
Child Opportunity Index Level				
Very Low (ref.)	13.6 (12.7; 14.5)		11.5 (10.7; 12.3)	
Low	11.3 (10.7; 11.9)	<0.001	10.8 (10.3; 11.4)	0.150
Moderate	10.6 (10.1; 11.0)	<0.001	10.7 (10.3; 11.2)	0.098
High	9.6 (9.2; 10.0)	<0.001	10.3 (9.9; 10.7)	0.008
Very High	9.0 (8.3; 9.6)	<0.001	10.1 (9.4; 10.8)	0.008

Note: The analysis, findings, and conclusions expressed in this report should not be attributed to Circana (formerly Information Resources Inc.[IRI]).

^aSource: Model estimates using data from the 2015 Circana Consumer Network Panel static panel. Circana projection factors/survey weights applied to reflect national estimates.

^bConfidence interval.

^cP-values are obtained from linear regression analysis.

^dAdjusted means reflect inclusion of all variables presented in the table in the regression analysis.

^eFor households with two heads, age represents the average age of both household heads.

^fAn anonymous reviewer suggested comparisons by race and ethnicity to be reported for all group comparisons, instead of a single reference group. Subscript “f” indicates statistically significant difference at 0.05 significance level with the reference group being household with Non-Hispanic Black primary shoppers.

^gStatistically significant difference at 0.05 significance level with the reference group being households with Non-Hispanic Asian primary shoppers.

^hStatistically significant difference at 0.05 significance level with the reference group being households with Non-Hispanic Other primary shoppers.

ⁱFor households with two heads (who were likely to make joint food purchase decisions even if only one was the primary shopper), education represents the highest educational attainment amongst them.